Оптоволоконная связь. Волоконно-оптические линии связи (волс) - строим сеть предприятия Пропускная способность оптоволоконного кабеля

За последние 30 лет, пропускная способность оптического волокна была значительно увеличена. Рост пропускной способности передачи на волокно даже значительно быстрее, чем, например, увеличение емкости электронных чипов памяти, или в увеличение вычислительной мощности микропроцессоров.

Пропускная способность волокна зависит от длины волокна. Чем длиннее волокно, тем больше пагубных эффектов, таких как межмодовая или хроматическая дисперсия, и, следовательно, тем ниже достижимая скорость передачи.

Для коротких дистанций, в несколько сотен метров или меньше (например, в сети хранения данных), часто более удобно использовать многомодовые волокна, так как они дешевле для установки (например, из-за их большой площади сердцевины волокна, они легче сращиваются). В зависимости от технологии передачи и длины волокна, они достигают скорости передачи данных от нескольких сотен Мбит / с и ~ 10 Гбит / с.

Одномодовое волокно обычно используется для больших расстояний, в несколько километров и более. В текущих коммерческих системах телекоммуникации обычно скорость передачи 2,5 или 10 Гбит / с на канал передачи данных на расстояние десяти километров и более. В будущем системы могут использовать более высокие скорости передачи данных в канале, 40 или даже 160 Гбит / с, но в настоящее время требуемая общая мощность обычно получается путем передачи многими каналами с немного разными длинами волн через волокна; это называется спектральным уплотнением (WDM). Общая скорость передачи данных может быть несколько терабит в секунду, достаточной для передачи многих миллионов телефонных каналов одновременно. Даже этот потенциал не достигает на сегодняшний день физический предел оптического волокна. Кроме того, отметим, что волоконно-оптический кабель может содержать несколько слоев.

В заключение не стоит беспокоится, что технические ограничения к оптическим волокнам в передаче данных могут стать серьезными в обозримом будущем. Напротив, тот факт, что возможности передачи данных может развиваться быстрее, чем, например, хранения данных и вычислительные мощности, вдохновило некоторых людей, чтобы предсказать, что любые ограничения передачи скоро устареют, и большие вычисления и хранения объектов в высокой емкости сети передачи данных будет широко использоваться, аналогично тому, как она стала общей для использования электрических мощности от многих электростанциях в больших энергосистемах. Такое развитие событий может быть более строго ограничено программным обеспечением и безопасности, чем ограничение передачи данных.

В журнале Nature Photonics опубликовано описание новой технология передачи данных по оптоволокну на скорости до 26 Тбит/с вместо нынешних максимальных 1,6 Тбит/с.

Группа немецких инженеров под руководством профессора Вольфганга Фройде (Wolfgang Freude) из университета Карлсруэ применила в оптоволокне технику OFDM (ортогональное частотное разделение каналов с мультиплексированием), которая широко используется в беспроводной связи (802.11 и LTE), цифровом телевидении (DVB-T) и ADSL.

В оптоволокне использовать OFDM сложнее, ведь тут нужно разделить на поднесущие световой поток. Раньше единственным способом сделать это было использование отдельного лазера для каждой поднесущей.

Сравнение разных видов мультиплексирования

Для вещания на каждой частоте используется отдельный лазер и отдельный приёмник, так что в одном оптоволоконном канале одновременно могут передавать сигнал сотни лазеров. По словам профессора Фройде, общая пропускная способность канала ограничена только количеством лазеров. «Уже был проведён эксперимент и продемонстрирована скорость 100 терабит/с», - сказал он в интервью BBC. Но для этого пришлось использовать около 500 лазеров, что само по себе очень дорого.

Фройде с коллегами разработали технологию передачи по оптоволокну более 300 поднесущих разного цвета одним-единственным лазером, который работает короткими импульсами. Здесь проявляется интересный феномен под названием оптический частотный гребень . Каждый маленький импульс «размазывается» по частотам и времени, так что приёмник сигнала с помощью хорошего тайминга теоретически может обработать каждую частоту по отдельности.

После нескольких лет работы немецким исследователям всё-таки удалось найти правильный тайминг, подобрать подходящие материалы и осуществить на практике обработку каждой поднесущей с помощью быстрого преобразования Фурье (БПФ). Преобразование Фурье - операция, сопоставляющая функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты при разложении исходной функции на элементарные составляющие - гармонические колебания с разными частотами.

БПФ идеально подходит для разложения света по поднесущим. Оказалось, что из обычного импульса можно извлечь в совокупности около 350 цветов (частот), и каждый из них используется в качестве отдельной поднесущей, как и в традиционной технике OFDM. В прошлом году Фройде с коллегами провели эксперимент и на практике показали скорость 10,8 терабит/с , а сейчас ещё больше усовершенствовали точность распознавания частот.

По словам Фройде, разработанная им технология тайминга и БПФ вполне может быть реализована в микросхеме и найти коммерческое применение.

Оптические технологии передачи данных стали прорывом в области телекоммуникаций и сетей передачи данных, требующих высокой скорости передачи. За последние несколько лет исследования привели к появлению систем, которые способны передавать данные на скорости 10 Гб/с и выше. Одним из основных преимуществ оптического кабеля является его способность передавать высокоскоростные оптические сигналы на большие расстояния. Эта статья посвящена оптическому кабелю, принципам, на которых он работает, а также основным блокам систем передачи данных по оптоволокну.

Волоконно-оптические технологии просто используют свет для передачи данных. Использование оптического кабеля началось примерно с 1970 года, когда удалось снизить издержки на производство оптического кабеля и связанных с этим затрат.

Использование оптического кабеля

Волоконно-оптические кабели используются в широком спектре приложений: начиная от медицинского зондирования, заканчивая высокоскоростными сетями передачи оборонных данных. Передача данных осуществляется с помощью оптических передатчиков, передающих высокоскоростные сигналы специальным оптическим приемникам. При этом происходит преобразование цифровых сигналов в оптические и наоборот. Скорость передачи данных по оптическому кабелю достигает 10 Гб/с.

На сегодняшний день существует два типа оптического кабеля: одномодовый (SM) и многомодовый (MM). В последнее время все чаще слышны заявления о том, что многомодовый является более перспективным, обеспечивая более чем стократное превосходство по производительности относительно одномодового оптического кабеля.

Самое активное использование оптического кабеля происходит в телекоммуникационной отрасли. Изначально телефонные компании использовали оптический кабель для передачи больших объемов голосового трафика между центральными телефонными станциями. С 1980-х годов телефонные компании приступили к развертыванию оптических сетей повсеместно.

Пропускная способность оптического кабеля является его наиболее важной и значимой характеристикой. Чем больше полоса пропускания, тем выше скорость передачи и тем больше трафик. Медь имеет весьма ограниченную полосу пропускания и серьезные ограничения на длину кабеля, что делает медную пару менее приемлемой для передачи высокоскоростных сигналов на большие расстояния.

Использование оптического кабеля дает следующие преимущества:

  • Высокая полоса пропускания для передачи голоса или видеоизображения.
  • Оптические волокна могут нести в тысячи раз больше информации, чем медная проволока. Например, всего одна прядь волокна может передавать все телефонные разговоры Америки в час пик.
  • Оптический кабель легче чем медь примерно в 10 раз.
  • Низкие потери. Чем выше частота сигнала, тем больше потерь в медной паре. Потери сигнала в оптическом кабеле одинаковы на всех частотах, за исключением сверхвысоких частот.
  • Надежность - оптический кабель более надежен и имеет большее время жизни, чем медный кабель.
  • Защищенность - оптические волокна не излучают электромагнитных полей, нечувствительны к помехам.

Физический механизм передачи оптических сигналов

В современном приложении оптические кабели подразделяются на многомодовые (MM) и одномодовые (SM), однако и те и другие базируются на одних и тех же принципах. Передача сигнала по оптическому кабелю возможна благодаря явлению, которое называется полным внутренним отражением. Благодаря этому возможна передача оптического сигнала на высокой скорости на большие расстояния.

Одномодовый оптический кабель или многомодовый?

SM и MM кабели различаются по своим размерам, что в свою очередь, влияет на проходящий по оптоволокну сигнал. SM кабели используют толщину основного волокна от 8 до 10 микрон, что позволяет передавать только одну длину волны. MM кабели, напротив, используют более толстое основное волокно примерно 50-60 микрон, что позволяет передавать несколько длин волн одновременно. В SM кабелях меньше величина затухания, что дает возможность использовать их на больших расстояниях. MM кабель позволяет передавать больше данных. Т.о. MM кабель обычно используется на небольших расстояниях, там где необходимо передавать данные с большой скоростью, например в системах хранилищ данных.

Строительные блоки волоконно-оптических систем

Типичная схема оптоволоконной системы состоит из передатчика, оптического кабеля и приемника. Передатчик преобразовывает цифровые электрические сигналы в оптические, которые дальше передаются по оптическому кабелю, обеспечивая высокую скорость передачи и независимость от электромагнитных помех.
Оптический кабель состоит из оптического волокна и двух разъемах на концах, обычно ST, SC, или FC, в зависимости от конфигурации приемника и передатчика.

Оптическое волокно состоит из центрального волокна толщиной несколько микрон, оболочки, которая обеспечивает полное оптическое отражение сигнала и внешней оплетки, которая обеспечивает защиту и идентификацию оптического кабеля.

Таким образом, строительство и эксплуатация волоконно-оптических систем является аппаратно-ориентированной на передачу сигнала на большие расстояния. Зачастую задача именно так и ставится: с помощью оптического кабеля передать с низким затуханием высокоскоростной сигнал на большое расстояние с приемлемым уровнем финансовых затрат.

Конструкция оптического кабеля

состоит из нескольких элементов. Оптический кабель состоит из нескольких элементов: из сердцевины, облицовки и внешнего покрытия. В основе оптического кабеля лежит сердцевина, по которой происходит передача световых сигналов. В основе сердцевины лежит кремний и германий. Оболочка, окружающая сердцевину оптического кабеля состоит из кремния и имеет коэффициент преломления несколько ниже центральной сердцевины. Показатель преломления - это отношение скорости света в вакууме к скорости света в материале. Скорость света в вакууме равна 300 000 000 метров в секунду. Чем выше показатель преломления, тем ниже скорость света в материале. Например, коэффициент преломления света в чистом воздухе равен 1, что означает скорость света в воздухе 300 000 км/c. Коэффициент преломления в стекле 1,5, что означает скорость света в стекле 200 000 км/c.



Несколько слоев буферных обшивок защищают центральную жилу. Защита служит для уменьшения физических нагрузок на кабель, таких как растяжение, изгиб и т.п. Наружная оплетка защищает от внешних воздействий, таких как экологические (температура, влажность, агрессивная среда).

Для соединения оптического кабеля наиболее часто используется SC коннекторы. SC коннектор обеспечивает наибольшую плотность упаковки. Системные администраторы должны учитывать особенности оптического кабеля и активного оборудования для выбора соответствующего типа коннектора.


Типы оптического кабеля

Одномодовый оптический кабель имеет очень маленькую сердцевину как правило 8-10 микрон, что позволяет передавать световые сигналы без устройств повторения на расстояния до 80 км, в зависимости от типа оборудования. SC оптический кабель обладает огромным информационным потенциалом из-за того, что имеет практически неограниченную пропускную способность.

Многомодовый может передавать несколько световых волн, он имеет более толстую сердцевину размером около 50 или 62,5 микрон. Из-за дисперсии многомодовый оптический кабель имеет большее затухание.

Оптика

Любая оптическая система состоит из трех компонентов: передатчика, среднего (волокно кабеля) и приемника. Передатчик преобразует электрические сигналы в свет и направляет его по волокну. Приемник получает световой сигнал и преобразует его в электрический
сигнал. Существуют два вида передатчиков: лазерного диод либо светодиод.

Выходная мощность передатчика указывает на количество энергии, излучаемой в определенный квант времени. Чем выше мощность, тем больше расстояние передачи сигнала. Передатчик имеет возможность изменять скорость передачи для удовлетворения потребности в пропускной способности системы. Диапазон длин волн, излучаемых источником сигнала находится в спектральной ширине.

Приемопередатчики отличаются чувствительностью к состоянию окружающей среды. Лазерный диод требует стабильного напряжения и температуры. Светодиоды являются менее чувствительны к колебаниям окружающей среды. Лазерные диоды являются более дорогостоящими. Светодиодные оптические источники имеют меньшее время жизни, но их легче устанавливать и они более экономичные.

Заключение
Несмотря на то, что развитие использования оптического кабеля началось в телекоммуникационной среде, сегодня это уже обычное дело. Многие компании и промышленные предприятия воспользовались оптоволоконными системами для увеличения производительности своих . Один из вопросов, с которым сталкиваются некоторые предприятия заключается в том, чтобы подключить к оптоволоконной системе имеющееся оборудование и инфраструктуру без дорогих обновлений. Используя медиаконвертеры, позволяющие соединять обычные сетевые каналы на базе медной витой пары и оптоволокна, возможно подключить практически любое сетевое оборудование. Медиаконвертеры предназначены для облегчения перехода на использование оптического кабеля, сводя к минимуму затраты на устранение возникающих проблем.

Внимание! Копирование и перепечатка информации с этого сайта запрещены без письменного согласия администрации.

Для простых дешевых оптоволоконных систем возможны расстояния между повторителями до 5 км. Для высококачественных коммерческих систем теперь без труда доступны расстояния между "повторителями до 300 км. Были разработаны системы (без использования повторителей) на расстояния до 400 км. В лабораторных условиях

достигнуты расстояния, близкие к 1000 км, но на рынке они пока недоступны. Одна европейская компания заявила, что в настоящее время разрабатывает оптоволоконный кабель, который можно проложить вдоль земного экватора и без всяких повторителей по нему можно будет передавать4сигнал с одного его конца на другой! Как такое возмож­но? При использовании слегка радиоактивной оболочки входящие фотоны с низкой энергией возбуждают в этой оболочке электроны, которые, в с^ою очередь, излучают фотоны с большей энергией. Таким образом возникает некоторая форма автоусиления. В следующих главах читателю будут разъяснены использованные термины.

На рынке кабелей с витой парой на скорости передачи 4 Мбит/с доступны расстояния между повторителями до 2,4 км. В случае коаксиальных кабелей на скоростях менее 1 Мбит/с между повторителями возможны расстояния до 25 км.

].2.5. Размер и вес Оптоволокно

По сравнению со всеми другими кабелями для передачи жданных, оптоволоконные кабели очень малы в диаметре и чрезвычайно легки. Четырехжильный оптоволоконный кабель весит примерно 240 кг/км, а*36-основный оптоволоконный кабеле весит примерно лишь на 3 кг больше. Из-за своих небольших по сравнению с традиционными кабелями с такой же пропускной способностью размеров их обычно проще устанавливать в сущест­вующих условиях, а время установки и стоимость в общем ниже, поскольку они легки и с ними проще работать.

Традиционный кабель может весить от 800 кг/км для кабеля с 36 витыми парами до 5 т/км для высококачественного коаксиального кабеля большого диаметра.

1.2.6. Использование в огнеопасных газовых средах Оптоволокно

Многорежимные волокна, работающие со светодиодными источниками света, подхо­дят для работы в огнеопасных зонах. До недавнего времени считали, что для использова­ния в огнеопасных зонах подходят все типы волокон; однако исследование показало, что определенные волоконные системы с мощными источниками света (лазерами) могут повышать температуру металлической поверхности, на которую они светят, до точки вос­пламенения горючих газов, а также могут при определенных условиях вызывать искры.

Если системы связи на традиционной кабельной основе не спроектированы очень строго и не придерживаются определенных внутренних стандартов безопасности, они не подходят для использования в огнеопасных зонах. Обычные кабели даже с малыми токами могут создавать между собой искры или дуги, если в передающих цепях не используются средства ограничения тока.

Электромагнитные волны включают в себя комбинацию электрических и магнитных полей. Рассмотрим электрический заряд. Он создает вокруг себя электрическое поле. Если заряд движется, он создает магнитное поле. Было теоретически показано и …

Здесь передатчик и приемник устанавливают начальную синхронизацию, затем непрерывно передают данные, поддерживая ее на протяжении всего сеанса передачи. Достигается это посредством специальных схем кодирования данных, таких, как манчестерское кодирование (Manchester …

Здесь передатчик и приемник действуют независимо и обмениваются синхрони­зирующей комбинацией битов в начале каждого кодового элемента (кадра) сообщения. Между одним кадром сообщения и следующим нет фиксированной зависимости. Это анало­гично таким …

по одному физическому волконно-оптическому кабелю. Такое увеличение емкости кабеля достигается исходя из фундаментального принципа физики. Он состоит в том, что лучи света с разными длинами волн не взаимодействуют между собой. Основная идея систем WDM состоит в использовании нескольких длин волн (или частот) для передачи отдельного потока данных на каждой из них. Благодаря этому удалось в 16-160 раз [ 16 ] увеличить широкополосность канала из расчета на одно волокно. Схема мультиплексирования показана на рис. 3.13 . На входе канала сигналы с помощью призмы объединяются в одно общее волокно. На выходе с помощью аналогичной призмы эти сигналы разделяются. Число волокон на входе и выходе может достигать 32 и более (вместо призм в последнее время используются миниатюрные зеркала, где применяется развертка по длине волны).


Рис. 3.13.

Эта достигается с помощью нескольких компонент . Во-первых, передаваемые данные должны посылаться на определенной несущей длине волны. Обычно волновое мультиплексирование WDM осуществляется в окне прозрачности 1530-1560 нм, где обеспечивается минимальное затухание сигнала до 0,2 дБ/км. Как правило, волоконно-оптические системы используют 3 длины волны - 850, 1310 и 1550 нм. Если входной сигнал является оптическим и передается на одной из этих длин волн, он должен быть преобразован для передачи с длиной волны окна прозрачности WDM . При наличии нескольких независимых входных сигналов каждый из них должен быть преобразован для передачи на своей длине волны в рамках этого диапазона. Затем эти сигналы объединяются с помощью оптической системы таким образом, что большая часть мощности всех сигналов передается по одному оптическому волокну. На другом конце линии световые сигналы разделяются с помощью сплиттера 5устройство, предназначенное для разделения сигнала на несколько частей. (еще одной системы линз) на несколько каналов. Каждый из этих каналов проходит через фильтры, отделяющие только одну из длин волн. В конце концов, каждая из отделенных длин волн попадает на свой приемник, который преобразует ее в исходный вид (оптический на длинах волн 850, 1310 и 1550 нм или медный).

Существует два типа систем WDM , обеспечивающих грубое ( CWDM ) мультиплексирование с большим шагом разноса несущих или плотное ( DWDM ) разделение шкалы длин волн. Системы CWDM обычно обеспечивают передачу от 8 до 16 длин волн с шагом в 20 нм, от 1310 до 1630 нм. Системы DWDM работают с количеством длин волн до 144, обычно с шагом менее 2 нм примерно в том же диапазоне длин волн. WDM ( CWDM или DWDM ) обычно используется в одном из двух приложений.

Первое и главное состоит в увеличении объема информации, передаваемого по оптическому волокну. В этом случае большое количество потоков данных передаются по небольшому количеству оптических кабелей. Это дает возможность значительно увеличить пропускную способность оптического кабеля. Так, при скорости 10 Гбит/с на канал общая пропускная способность каждого волокна составит 1,25 Тбит/с, (то есть 12 500 000 000 000 бит в секунду). Конечно, в большинстве случаев такой уровень скоростей не требуется, обычной задачей является передача нескольких потоков Gigabit Ethernet по одной паре волокон, когда дополнительных пар уже нет. Во многих случаях проложить новый оптический кабель оказывается слишком дорого или просто невозможно. Тогда использование технологии WDM становится единственной возможностью для увеличения пропускной способности.

Второе приложение WDM появилось сравнительно недавно, когда все большее число заказчиков стали использовать высокоскоростные каналы связи. В этом случае оператор связи предоставляет заказчикам, имеющим офисы в разных точках города, длины волн в своем кабеле для организации каналов " точка-точка ". Например, крупная компания, имеющая два здания в разных концах города, может поставить задачу их объединения. Для решения этой проблемы оператор может развернуть сеть . При использовании WDM оператору нет необходимости заботиться о том, какой протокол или технология используется заказчиками, что дает возможность более гибкого предоставления услуг. Использование WDM в сетях абонентского доступа будет рассмотрено в дальнейшем.

Устройства для организации WDM пассивны, т.е. не требуют электропитания. Однако многие из них требуют постоянной температуры. Для этого устанавливаются устройства регулировки температуры, а им необходимо удаленное электропитание. Тогда используется смешанный кабель , который наряду с оптическими волокнами содержит медные жилы. Для обеспечения норм по затуханию при передаче информации по оптическим кабелям применяются регенераторы и усилители сигналов.

При передаче одиночного оптического сигнала (см рис. 3.13 а) каждый регенератор преобразует оптический сигнал в электрический, корректирует временные параметры, выделяет передаваемую информацию и в результате управляет лазерным передатчиком для регенерации сигнала и преобразование оптического сигнала в электрический сигнал требует больших затрат, поскольку применяет очень дорогие компоненты (лазеры и сверхскоростную электронику).

imОптические системы передачи: а) с линейной регенерацией; б) DWDM составной сигнал с одним участком разделения по длине волны; в) DWDM составной сигнал с оптическим усилителем последовательного ввода информации в оптический кабель для передачи ее по следующему участку.

Схема, показанная на рис. 3.13 б, передает составной WDM -сигнал. При этом на каждом регенераторном участке производится разбиение составного сигнала на отдельные сигналы. Далее производится индивидуальное преобразование в электрическую форму и индивидуальная регенерация. Более предпочтительно применение оптических усилителей, которые могут усиливать сигнал на всех длинах волн, составляющих WDM -сигнал. Оптический усилитель на оптоволконе, легированном эрбием (Erbium-Doped Fiber Amplifier - EDFA ) - это отрезок оптоволокна типа EDFA и полупроводниковый лазерный диод в качестве источника "накачки". Усилитель принимает ослабленный сигнал и генерирует мощный сигнал в оптический кабель , легированный эрбием. От воздействия мощного сигнала атомы эрбия возбуждаются и генерируют фотоны в той же самой фазе и направлении, что и посылаемый сигнал. В результате получается эффект усиления. Такие усилители могут быть спроектированы на все диапазоны длин волн. Применение усилителей снижает потребность в применении регенераторов, как это показано на рис. 3.13 б. При этом имеется ограничение на количество последовательно устанавливаемых усилителей. Тем не менее установка усилителей позволяет увеличить расстояние между регенераторами и связанное с ними преобразование оптика-электроника до сотен и тысяч километров.

Краткие итоги

  • Передача информации по волоконно-оптическому кабелю имеет целый ряд достоинств перед передачей по медному кабелю: широкая полоса пропускания, малое затухание светового сигнала в волокне, низкий уровень шумов, защищенность от электромагнитных помех, малый вес и объем, высокая безопасность от несанкционированного доступа, гальваническая развязка элементов сети, пожаробезопасность, уменьшение требований к линейно-кабельным сооружениям, экономичность, длительный срок эксплуатации.
  • Оптоволоконный кабель содержит три основных элемента: оплетка, оболочка, сердцевина.
  • Сердцевина - волоконный светопроводящий элемент окружен оболочкой, которая имеет меньший показатель преломления света. Это приводит к тому, что большинство световых лучей в сердцевине отражаются внутрь сердцевины.
  • Максимальный угол, при котором для вводимого в волокно светового излучения обеспечивается полное внутреннее отражение, называется числовая апертура .
  • При построении сетей могут использоваться многожильные кабели.
  • Оптические волокна, в которых допускается прохождение лучей к приемнику многочисленными путями, называются многомодовыми.
  • Запаздывающие лучи приводят к расширению передаваемых импульсов. Это явление называется дисперсией. Величина этого расширения прямо пропорциональна ширине импульса и обратно пропорциональна скорости передачи.
  • Пропускная способность оптического кабеля, которая характеризуется коэффициентом широкополосности (BDF - Bandwidth Distance Factor).
  • Волокна, у которых на границе "оболочка-сердцевина" происходит скачок коэффициента преломления, называются волокнами со ступенчатым показателем преломления.
  • Волокна с изменяющимся показателем преломления по указанному выше закону называется градиентными и имеют коэффициент широкополосности на два порядка больше, чем ступенчатые волокна.
  • Затухание измеряется в дБ/км и определяется потерями на поглощение или рассеяние излучения в оптическом волокне. Потери на поглощения зависят от прозрачности материала, из которого изготовлено волокно. Потери на рассеяние зависят от неоднородности преломления материала.
  • Хроматическая дисперсия возникает в том случае, если световой сигнал состоит из волн разных длин. Хроматическая дисперсия - один из механизмов лимитирующих полосу пропускания волоконно-оптических кабелей, ухудшающих распространение импульсов сигнала, который состоит из различных цветов проходящего света (некогерентность сигнала).
  • Хроматическая дисперсия состоит из материальной и волноводной составляющих и происходит при распространении как в одномодовом, так и в многомодовом волокне.
  • Материальная составляющая отражает свойства зависимости показателя преломления волокна от длины волны. В выражение для дисперсии одномодового волокна входит характеристика материала, а именно - зависимости показателя от длины волны. Эта составляющая определяется скоростью (дифференциалом) возрастания или уменьшения показателя преломления в зависимости от длины волны. С увеличением длины волны этот показатель может быть положительным, (коэффициент преломления возрастает) или отрицательным (коэффициент преломления убывает).
  • Волновая дисперсия определяется временем распространения сигнала в зависимости от длины волны. Она всегда положительная (время распространения с увеличением длины волны только возрастает).
  • При определенной длине волны (примерно для ступенчатого одномодового волокна) происходит взаимная компенсация материальной и волновой дисперсий, а результирующая дисперсия обращается в нуль. Длина волны, при которой это происходит, называется длиной волны нулевой дисперсии . Обычно указывается некоторый диапазон длин волн, в пределах которых может варьироваться для данного конкретного волокна.
  • Установлено, что при определенной форме сигнала он имеет наименьшую дисперсию. Такие импульсы называются солитонами .
  • Имеется два типа приборов, преобразующих электрический сигнал в световой - это светодиоды и лазерные диоды. Светодиоды (LED- Light-Emitting Diode ) генерируют некогерентное излучение (сигнал содержит составляющие из нескольких длин волн). Принцип излучения светодиодов позволяет модуляцию только по интенсивности излучения. Мощность излучения светодиодов может достигать нескольких десятков мкВт.
  • Лазерный диод обеспечивает когерентное излучение. Его луч обладает более узким спектром, по сравнению со светодиодом. Принцип излучение лазерных диодов позволяет использовать модуляцию по параметрам световой волны, например частотную.
  • Лазерные диоды отличаются более сложной конструкцией и большими электрическими нагрузками по сравнению со светодиодами, но они уступают последним в надежности, удобстве эксплуатации и стоимости.
  • В обычных фотодиодах формируется ток, зависящий от интенсивности падающего излучения, их отличают хорошая линейность и стабильность работы, малое время отклика, но они не обеспечивают усиление фототока.
  • Фототранзисторы имеют высокую чувствительность и хорошее усиление, но из-за большой барьерной емкости время отклика у них большое, то есть частотные характеристики хуже, чем у диодов.
  • p-i-n обладают большей чувствительностью, чем светодиоды. Их барьерная емкость мала, за счет чего обеспечиваются хорошие частотные характеристики (граничная частота - до 1 ГГц).
  • Лавинные диоды характеризуются высокой чувствительностью, большим усилением и высоким быстродействием, однако, их использование затруднено сложностью, высокой стоимостью, высокими рабочими напряжениями, необходимостью стабилизации напряжений и температур и работой только в режиме усиления слабого сигнала.
  • Одними из критических мест волоконных систем являются сращивание волокон и разъемы. Потеря света в соединителе составляет 10-20%. Для сравнения: сварка волокон приводит к потерям не более 1-2%.
  • Кросс, предназначенный для оптического кабеля, относится к кроссам высокой плотности, т.е. количество подключаемых пар на единицу площади превышает предыдущие системы (например, цифровые системы уплотнения).
  • Волновое мультиплексирование (Wave Division Multiplexing -